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SUMMARY

In this paper, an efficient numerical method for unsteady free surface motions, with simple geometries,
has been devised. Under the potential flow assumption, the governing equation of free surface flows
becomes a Laplace equation, which is treated here by means of a series expansions of the velocity
potential. The free surface is represented with a height function. The present method is applied to surface
gravity waves to test the stability and accuracy of the method. To show the versatility of the method, a
model for a dip formation is considered. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In developing a numerical method, there are some checkpoints, such as accuracy, speed,
flexibility, versatility and so on, to consider. Among these checkpoints, the developers
sometimes forget the importance of convenience of implementation. Building up a versatile
and accurate method is very important. Building up a method that can be easily applied is also
necessary. Complex phenomena can be frequently explained by simplified models. Even if the
simplified models fail in explaining the whole phenomena, they often succeed in explaining the
major phenomena. For the solutions of the simplified models, there is no need to use a general,
but complicated, method. To use a simple method for a simplified model is often more efficient
than using a general method for the original system. In this paper, a simple method that can
be easily applied, is proposed.

The system considered is free surface flows. The phenomena of free surface motions are
abundant in nature. Unfortunately, it is very difficult to study the dynamics because of the
non-linearity of fluid and the existence of free surfaces, freely moving and arbitrarily shaped
boundaries across which, some physical quantities vary discontinuously.

Generally, Navier–Stokes equation must be solved, which is usually hard even for fixed and
simple boundaries. In this case, there is the volume of fluid (VOF) method [1,2], the markers
and cell (MAC) method [3–8], and so on [9–11]. Boundary fitted co-ordinates are sometimes
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used [12–18]. In many cases, it is enough to treat the flow as a potential flow. Under the
assumption of the potential flow, the governing equation can be simplified to a Laplace
equation, which can be handled more easily than the Navier–Stokes equation. In this case, the
boundary integral method [19–21] and the vortex sheet method [22–27] are frequently used.

Since the purpose is to develop a simple numerical method for free surface flows, the
potential flow assumption is adopted. The numerical method is based on a kind of series
expansion that is similar to the Stokes expansion [28–30]. This kind of approach is simple,
easy to implement and it is easy to interpret the results. A series expansion of the velocity
potential has often been used for the study of the ‘steady’ free surface flows [29–35]. In this
paper, the ‘unsteady’ free surface motions are focused upon. As far as is known, there are few
examples that apply the series expansion to unsteady free surface flow calculations, directly.

To examine the accuracy and stability of the present method, surface gravity waves [28,36]
are considered as a test problem. Surface gravity waves with a small amplitude is a trivial test
example, but if the amplitude becomes larger, the problem becomes more difficult, with
increasing non-linearity. After confirming the validity of the numerical method, the present
method is applied to a dip formation problem due to a sink [21,37–41], which can be an
interesting and important example.

In Section 2, the governing equations and boundary conditions for free surface flows are
derived under the assumption of a potential flow. In Section 3, the numerical method
employed here is explained and its characteristics discussed. In Section 4, surface gravity waves
are studied with the present numerical method. By comparing the results with other results
reported earlier, the accuracy and stability of the present method are discussed. In Section 5,
a sink flow is studied with the present method. The study can be one example that shows the
applicability of the method.

2. GOVERNING EQUATIONS

Assuming a potential flow, a non-rotational flow of an inviscid fluid, a velocity potential f can
be defined as

6� =9f, (1)

where 6� denotes velocity. The incompressibility condition gives the following Laplace equation
as the governing equation,

92f=0. (2)

With the appropriate boundary conditions, a full set of governing equations describing free
surface flows is possible. Two kinds of boundaries need to be considered: fixed boundaries for
walls and bottoms, and freely moving boundaries for free surfaces. The boundary conditions
for fixed boundaries are the same as those of other fluid problems without free surfaces. That
is, for an impermeable boundary, the boundary condition is

n̂ ·9f=0, (3)

where n̂ is the normal vector of the boundary.
For the boundary conditions at the free surface, two boundary conditions, namely, the

kinematic boundary condition and the dynamic boundary condition [28] need to be considered.
The kinematic boundary condition treats the fact that fluid particles, once at the free surface,
must remain at the free surface. In other words, the free surface moves with the velocity of the
fluid. This condition is written as
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ft+ufx+6fy+wfz=0 on f(x, y, z, t)=0, (4)

where f(x, y, z, t)=0 is the equation of the free surface position. Subscripts denote partial
derivatives with respect to themselves and u, 6, and w are, respectively, the x-, y-, and
z-directional velocities.

For an inviscid fluid, the dynamic boundary condition refers to the pressure continuity
condition through the free surface [5,42], which is obtained from the momentum equation at
the free surface. Assuming the atmospheric pressure to be zero, the dynamic boundary
condition for free surface flows under gravity is

ft+
1
2

�9f �2+gz=0 on f(x, y, z, t)=0. (5)

Gravitational acceleration is denoted by g, with its direction in the −z-direction. If there are
other components, e.g. surface tension effects, Equation (5) needs to be modified.

3. NUMERICAL METHOD

Numerical methods for free surface flow calculations are composed of two main parts. One
part is about representing the location of the free surface and the other is about solving the
governing equations.

A free surface can be written formally as z=h(x, y, t). Here, h is sometimes called the
‘height function’. The height function representation, while it is very simple, has some
limitations. One major limitation is that the height function method can not describe
multivalued surface profiles. For example, it is hard to apply the height function method to
wave breaking phenomena. Another shortcoming of the height function method is faced when
one tries to solve the governing equations. Usually, the height function approach produces
large errors at the points on which the derivative of the height function, the slope of the free
surface, is greater than the grid resolution, say dz/dx [1], with dx and dz being the grid sizes
in the x- and z-directions, respectively. In spite of these shortcomings, the height function
method is still useful and powerful for the free surface flow calculations due to its simplicity.

The method for the governing equations will be discussed now. Under the potential flow
assumption, the governing equations are reduced, through the introduction of a velocity
potential f, to a Laplace equation with proper boundary conditions. Then, the major point to
free surface flow calculations becomes how to efficiently solve the Laplace equation under the
kinematic and dynamic boundary conditions. To discuss the method employed in this paper,
the governing equations and the boundary conditions with a height function and a velocity
potential, will be discussed first.

92f=0, (6)

ht+fxhx+fyhy=fz on h(x, y, t), (7)

ft+
1
2

�9f �2+gz=0 on z=h(x, y, t). (8)

For free surface flows with simple geometries, it is useful to represent the velocity potential,
f, as a sum of the homogeneous solutions of the Laplace equation. In rectangular co-ordi-
nates, a homogeneous solution can take the form

f�eikx x eiky y e9kz, (9)
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where k= �kb �=
kx
2 +ky

2 is a horizontal wavenumber. The total solution f can then be
written as

f(x, y, z, t)=%
kb

Ckb
(9 )(t) eikx x eiky y e9kz, (10)

where Ckb
(9 ) is the coefficient of the eikx x eiky y e9kz mode. One can find solutions of the Laplace

equation by finding Ckb
(9 )(t) instead of solving the Laplace equation directly. The basis

functions are, in general, modified with respect to the system’s symmetry. This method can be
classified as one of the spectral methods [43], which are frequently used in many kinds of
numerical calculations.

This kind of expansion of the velocity potential f is very similar to the Stokes expansion.
For example, in a two-dimensional system, the Stokes expansion is

f(x, z, t)=%
k

Ck
(9 ) ei(kx−v(k)t) e9kz. (11)

In the Stokes expansion, the coefficients are time-independent and the modes are related to
space and time with their dispersion relationships. In most of the examples using the Stokes
expansion in numerical calculations, the expansion would be used to find ‘steady’ free surface
flows. In this paper, focus is on unsteady free surface motions. There has been a similar
approach to unsteady motions [44]. But in that approach, a small amplitude assumption
should be satisfied, so that Taylor’s expansion about mean height level is used. In this paper,
the coefficients can be determined without such an assumption.

Here, the coefficients Ckb
(9 ) will be determined from the dynamic boundary condition. First,

ft is calculated from Equation (8), and after collocating a sufficient number of ft values at
different positions, the coefficients dCkb

(9 )/dt are determined from the relationship between ft

and dCkb
(9 )/dt. From the relationship between Ckb

(9 ) and f, one can write the relationship
between dCkb

(9 )/dt and ft as

ft(x, y, z, t)=%
kb

dCkb
(9 )

dt
(t) eikx x eiky y e9kz. (12)

If ft is calculated at N different positions, say xi= iDx for i=1, 2, 3, . . . , N, then one has
N equations for ft and dCkb

(9 )/dt. In a simple two-dimensional case, the set of equations can
be written as

ft(xi, h(xi, t), t)=%
k

dCk
(9 )

dt
(t) eikxi e9kh(xi ,t), for i=1, 2, 3, . . . , N. (13)

If N is equal to the number of modes used in the series expansion, the time derivatives of
the coefficients dCk

(9 )/dt can be determined, unless the equations are linearly dependent on
each other. Usually, to avoid numerical instability that can arise during the coefficient
determination, N is chosen to be larger than the number of modes and the differences between
the right-hand side and the left-hand side of Equation (13) are minimized.

By solving N variable linear equations, Equation (13), dCkb
(9 )/dt can be obtained. Simulta-

neously, ht is calculated from Equation (7). Then, Ckb
(9 ) and h can be updated using dCkb

(9 )/dt
and ht.

Many kinds of time marching schemes can be used for updating Ckb
(9 ) and h. In this paper,

focus is more on the validity of the series expansion of the velocity potential than on the
selection of time marching schemes. A predictor–corrector scheme is used for updating Ckb

(9 )

and h. The scheme is expressed by the following equations:
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predictor: A0 (t0+Dt)=A(t0−Dt)+2Dt
dA
dt

(t0). (14)

corrector: A(t0+Dt)=A(t0)+
Dt
2
�dA

dt
(t0)+

dA0
dt

(t0+Dt)
n

. (15)

Here, A represents Ckb
(9 ) or h and dA0 /dt is the time derivative of the predicted value A0 . For

the implementation of the predictor–corrector scheme, it is found to be more efficient to
calculate dCkb

(9 )/dt than to calculate Ckb
(9 ). This time marching scheme turns out to be accurate.

Since this method is highly dependent on the system’s geometry, it is difficult to generally
extend this method. However, in spite of this disadvantage, this method has some merits. One
of the merits is that once the coefficients are known, one can easily calculate the derivatives of
f, as well as its value. Also, this method may overcome one of the shortcomings of the height
function method, i.e. the accuracy problem occurring when the slope of the free surface is
greater than the grid resolution. This is because, in this method, there is no need to divide the
space into cells in the vertical direction.

Now the time complexity of the present method is discussed. The method spends most of its
computing power in solving the set of equations in Equation (13). The time complexity is
nearly the same as that of the linear equation solver. If N data are collocated and Nmode modes
are used, the time complexity of the linear equation solver can be lowered to NNmode. This
represents the numerical efficiency of the present method, which is comparable with those of
the boundary integral method [19–21] and other methods [22–27] for an inviscid fluid. The
time complexity of NNmode is verified from test calculations. The computational efforts with
different N and Nmode values are given in Table I. The values represent the times spent, which
are normalized by the time spent when N=64 and Nmode=31. The time complexity is found
to be almost linear in N and Nmode.

Since a finite number of modes is being used in numerical calculations, it is necessary to
examine the convergence of the series of Equation (10). There are some reports about the
convergence of the Stokes expansion [29,30], which conclude that the convergence of the
Stokes expansion is achieved when the amplitude of waves, i.e. half of the height difference
between crests and troughs, is not too large. If the wave amplitude is large, one would use
other techniques to improve the convergence rate, e.g. the hodograph formulation [30,45] and
Padé approximants [29]. This comment may work the same on the method proposed in this
section. The convergence of the present method is studied by considering surface gravity waves
as a test problem with different wave amplitudes.

Table I. Computational efforts with respect to N and Nmode.

N=64
6347393123 5515Nmode

Efforts 0.412 0.767 1.000 1.263 1.550 1.858 2.199

Nmode=31
72 80N 32 40 48 56 64
1.092 1.187Efforts 0.644 0.733 0.823 0.908 1.000

The values represent the times spent, which are normalized by the time spent for N=64
and Nmode=31. The time complexity is almost linear in N and Nmode.
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Table II. Results of the convergence test with respect to N and Nmode.

N

824 1632128 96 64 48

Nmode 95 0.2312213
63 0.2312213 0.2312169
47 0.2312213 0.2312169 0.2312041
31 0.2312213 0.2312169 0.2312041 0.2311864 0.2311362

0.231067023 0.2312213 0.2312168 0.2312041 0.2311863 0.2311361
0.23088920.231065715 0.23113360.2312177 0.2312133 0.2312008 0.2311832
0.2308268 0.23088917

The values are h(x=0, t=6.28) with different N and Nmode values.

4. TEST CALCULATION AND DISCUSSION OF NUMERICAL ACCURACY

As the test problem, surface gravity waves are considered, for which the dispersion relation is
given by

v$v0+
1
2

e2v2,

v0
2=gk tanh kh0,

v2=
gk (9v0
−7−12v0

−3−3v0−2v0
5)/32, (16)

from a pertubation calculation [36]. This relationship is for the waves formed in an infinitely
long tank which has a uniform depth h0 under gravity g. Here, k is the wavenumber and e is
the steepness, defined as e=ka, where a is the wave amplitude. An easy way of confirming the
accuracy of the numerical method would be to examine the dispersion relation.

Considering the boundary condition at the bottom, z= −h0, the velocity potential can be
written as

f(x, y, z, t)=2 %
kb

Ckb (t) eikx x eiky y ekh0 cosh[k(z−h0)], (17)

where k=
kx
2 +ky

2. To find the velocity potential, one just needs to determine Ckb (t) instead
of calculating f itself.

The initial conditions for the problem are obtained from the approximate analytical solution
of Tadjbakhsh and Keller [36] and the computed solution is compared with the approximate
analytical one.

The calculation is performed in two-dimensional space. The horizontal direction is denoted
by x and the vertical by z. A periodic boundary condition is imposed in the horizontal
direction. The direction of gravity is downwards, −z-direction, and its magnitude g is
normalized to 1. The width, L, is taken to be 2p and the depth, h0, to be 3. Sixty-four data
points are collocated uniformly in the whole region and 31 modes are used for the expansion.
The parameters used, N and Nmode, are confirmed to be accurate enough by the following
convergence test. The results of the convergence test are shown in Table II. The values in Table
II are h(x=0, t=6.28) for different N and Nmode values. Note that the results almost depend
on N rather than Nmode because, in the present example, only a few modes take part in the
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dynamics. The time step, Dt is set to 0.01, which is found to be within the numerical stability
range.

To determine the coefficients, Ck, many kinds of methods can be used. A couple of methods
have been tested. The results do not differ much from each other. In this paper, all results
presented are prepared, for the determination of the coefficients, with the IMSL non-linear
least square code, UNLSJ.

Figure 1 shows a temporal evolution of the free surface profile for e=0.05. The horizontal
direction is the x-axis and the vertical direction is the time axis. The surface profile is plotted
as a three-dimensional surface with respect to space and time. In the figure, a regular periodic
pulsation is shown.

In Figure 2, h(x=0, t) is plotted for e=0.05, 0.1 and 0.2, which correspond to Figure 2(a),
(b) and (c), respectively. With increasing e value, non-linearity takes a more important role.
The case of e=0.2, which is about 45% of the Stokes limiting steepness [44], is adequately
non-linear. By considering larger e cases, there is confidence in the convergence of the series
expansion and the validity of the method for non-linear problems. For comparison, Tad-
jbakhsh and Keller’s approximate analytic results [36] are also plotted (represented by dashed
lines). In Figure 2(a) it is hard to distinguish the numerical result from the Tadjbakhsh and
Keller’s series solution. As e becomes larger, there are differences between the two results.

To compare the two results, i.e. the numerical result and the approximate analytical result,
further, power spectrums of h(x=0, t) are given in Figure 3. Figure 3(a), (b) and (c)
correspond to the cases of e=0.05, 0.1 and 0.2, respectively. The power spectrums are
obtained from the time series of h(x=0, t) for about 260 periods. The resolution of the power
spectrum, Dv is about 0.003. In Figure 3(a), the major peak is located at v=0.999, which is

Figure 1. Temporal evolution of the free surface profile for surface gravity waves with e=0.05. The horizontal axis
is for space and the vertical axis is for time. A regular periodic pulsation is seen.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 887–902 (1998)
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Figure 2. Time series of h(x=0, t). (a), (b) and (c) correspond to the cases of e=0.05, 0.1 and 0.2, respectively. For
comparison, Tadjbakhsh and Keller’s series solution is plotted by dashed lines (– – –).

nearly equal to the value, 0.997, from the dispersion relation (16) within the resolution. In this
case, it is found that the time periodicity arises as the analytical studies predict and the period
is nearly equal to the analytical one, even if no time periodicity is imposed. The second largest
peak is the second harmonics of the major frequency and the smallest peak corresponds to the
frequency for the second smallest k value, which is 
2 times the major frequency. Call this
frequency the second frequency. From the dispersion relation (Equation (16)), it can be found
that the frequency is almost proportional to 
k when h0 is large enough. The numerical result
agrees well with the proportionality of the dispersion relation.

In Figure 3(b), for e=0.1, the major frequency is 0.999 while the expected frequency from
the series solution is 0.994. The amplitudes of the second harmonics and the second frequency
increase. A new frequency can be seen at the location of 
3 times the major frequency, the
third frequency. For e=0.2, the major peak shifts to 0.991 and the expected frequency from
the series solution is 0.990. The amplitudes of the second frequency, the third frequency and
the second harmonics of the major frequency increase further. In addition, new frequencies

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 887–902 (1998)
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appear, which are thought to correspond to the sum frequency and the difference frequency of
the major frequency and the second frequency. Also, as e increases further, it is observed that
the major frequency broadens.

The numerical results exhibit frequency shifts, frequency broadenings and new frequency
generations, which are general phenomena in non-linear wave interactions. This paper consid-
ers that the numerical results are more realistic than the series solutions that were obtained by
imposing a time periodicity.

Next, the mass conservation is examined. This is another way to confirm the validity of a
numerical method. Consider a temporal variation of the average height of the free surface,
which is equivalent to the temporal variation of volume or mass. From the results, it can be
found that the value stays at zero for about 300 wave periods.

Note that an extension of the present method to three-dimensional problems is straightfor-
ward. To achieve the same order of accuracy, if N and Nmode are used in two-dimensional

Figure 3. Power spectrums of h(x=0, t). (a), (b) and (c) correspond to the cases of e=0.05, 0.1 and 0.2, respectively.
As e increases, frequency shifts, frequency broadenings and new frequency generations appear.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 887–902 (1998)
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Figure 4. Schematic drawing for a dip formation in (a) a real system and (b) a simplified model.

calculations, N2 and N2
mode should be used in three-dimensional calculations. Since the

computational cost is proportional to NNmode in two-dimensional calculations, it is propor-
tional to N2N2

mode in three-dimensional calculations. Considering the time complexity and the
computing power available, the present method seems suitable for three-dimensional calcula-
tions. Examples of three-dimensional calculations with the present method can be found
elsewhere [46].

5. APPLICATION TO A SINK FLOW WITH A FREE SURFACE

The present method appears applicable to non-linear wave interaction problems. However, in
this paper, the method is applied to a more interesting problem, a dip formation. A dip
formation is one of the interesting surface flow phenomena that is found frequently, e.g. in
selective withdrawal problems [47–52] and in gas entrainment problems in nuclear reactors
[53–59]. In spite of its wide applicability, not much is known because of the difficulty in
approaching the problem. Applying the numerical method to this problem is an example for
simplified models, which can be studied instead of the complicated original systems.

There are several topics on the study of dip formation problems. Steady state solutions are
usually studied [60–65]. However, not many works have been reported about the temporal
evolutions of the free surface. Focus is on the evolutions of the free surface profile. To
compare the results, the results of Tyvand’s series solutions for a line sink [39] are used.

Free surface flows occurring when fluid flows out through a hole at the bottom of a tank,
can be treated by free surface flows due to a sink which is located in a semi-infinite fluid
(Figure 4). A line sink is considered, which is located at (0, −H). The volume flux is Q0.
Initially, the free surface profile is h=0 and the internal velocity potential is 0 everywhere,
which can be imposed by letting all Ckb be zero. At t=0, the sink is turned on and the free
surface profile changes due to the sink effect and gravity. Dimensionless quantities are

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 887–902 (1998)
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introduced by defining H as a unit of length, 
gH3 as unit a of volume flux and velocity
potential, and 
H/g as a unit of time. Through this non-dimensionalization, the governing
equations become Equations (6)–(8), with g=1.

Considering the sink effect, the governing equation becomes a Poisson equation,

92f=q(x� ), (18)

with proper boundary conditions. Here, q(x� ) is a function due to the sink. If a volumeless sink
is considered, the function q(x� ) can be written as

q(x� )=q0d(x� −x� 0), (19)

where x� 0 is the location of the sink and q0 is the strength of the sink. Since a semi-infinite fluid
is considered, the boundary condition at z�−� is used instead of the boundary condition
at the bottom. The boundary condition is written as

�9f ��0 as z�−�. (20)

The other boundary conditions do not change although a sink exists.
To find solutions of the Poisson equation, the steps of Tyvand’s calculations [39] are

followed, where the velocity potential is written as a sum of an external singular velocity
potential due to the sink, fe and an internal velocity potential, fi.

f=fe+fi. (21)

The external velocity potential and the internal velocity potential satisfy the following Poisson
equation and Laplace equation, respectively.

92fe=q0d(x� −x� 0), (22)

92fi=0. (23)

It should be noted that the boundary conditions must be satisfied by the total velocity
potential.

The Poisson equation can often be solved with the image source method for the systems with
simple geometries. If the free surface elevation is constant, i.e. h(x, y)=constant, the external
velocity potential will be the sum of the velocity potential due to the sink, which is regarded
as a sink located in an infinite fluid, and the velocity potential of its mirror image. For a line
sink of strength q0, which is located at (0, −h0) in x–z-plane, the external potential is written
by

fe=
q0

4p
log[x2+ (z+h0)2]+ (image term). (24)

The above expression for the external velocity potential can be used as an assumption for
calculations of dip formations. This assumption is valid when the surface distortion is not too
large. Numerical solutions of dip formation problems are sought using the above external
velocity potential assumption.

Since the internal velocity potential should satisfy the Laplace equation under proper
boundary conditions, an efficient method is needed to solve the Laplace equation. The present
numerical method is applied to this problem. Considering the boundary condition at z�−�,
the internal velocity potential can be written as

fi(x, y, z, t)=%
kb

Ckb (t) eikx x eiky y ekz. (25)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 887–902 (1998)
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In this paper, two-dimensional cases are only considered. Considering symmetry, only the
even modes are used in the expansion, and calculations are performed in the right-half space.
Data at 65 points are sampled to determine 32 mode coefficients. The width of the whole
region is 10, so that the width of the calculational region is 5. The time step, Dt, is taken to
be 0.001, which is smaller than the Dt used in the previous section because dip formation
phenomena usually exhibit drastic changes in the surface profile. To determine the coefficients,
the IMSL non-linear least square routine is used.

Figures 5 and 6 are the numerical results for the sinks whose strengths are 1.8 and 0.2,
respectively. Free surface profiles calculated numerically at different times are drawn with solid
lines. Free surface profiles are plotted only in the half region considering the symmetry. The
time intervals between the nearest free surface profiles are 0.02 in Figure 5 and 0.2 in Figure
6. For q0=1.8, the sink strength is large enough so that the free surface moves downwards and
a dip forms. However, for q0=0.2, the sink strength is not sufficiently large for a dip to form.
The free surface moves downwards for a while after the sink is turned on, but soon after, the
free surface moves upwards because gravitational restoration dominates the sink effect.

Tyvand’s series solutions are drawn with dashed lines in Figure 6, for the same condition of
the numerical calculations. The series solutions for q0=1.8 are not plotted because the results
are too close to the numerical results to distinguish between the two results in the resolution
of the figure. Instead, for a comparison of the two results, the free surface locations at some
x positions are shown in Table III. The data correspond to the last, i.e. the lowest, surface
profile in Figure 5. The differences between the two results are only about 10−5.

Also found is that for q0=0.2, the numerical results agree well with the series solutions for
small t. But as time evolves, the two results exhibit disagreements. The main reason for the
disagreements is that the numerical calculations were performed in a practical finite domain,
whereas the series solutions were obtained in a hypothetical infinite domain. It is shown in
Figure 6 that the numerical results are smaller than the series solutions’, near the end of the
calculational domain. In the series solutions, fluid supply from outside of the domain is due to

Figure 5. Evolution of the free surface profile due to a line sink of strength q0=1.8. The free surface moves
downwards and a dip is about to form. The time intervals between the nearest surface profiles are 0.02.
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Figure 6. Evolution of the free surface profile due to a line sink of strength q0=0.2. The numerical results are drawn
with solid lines (—) and Tyvand’s series solutions are drawn with dashed lines (– – –). The time intervals between the
nearest surface profiles are 0.2. In the series solutions, for a while after the sink is turned on, the free surface moves

downwards, but soon the free surface moves upwards because gravitational restoration dominates the sink effect.

both the internal and the external velocity potential, while in the numerical calculations, fluid
supply is actually due to the external velocity potential, i.e. the sink effect. Because of the
disagreements near the end of the domain, the slopes of the series solutions are greater than
the slopes of the numerical results. This makes gravitational restoration of the series solutions
larger than that of the numerical results. Thus, the free surface moves upwards more quickly
for the series solutions.

In short, the disagreements can be explained by the effect of the finiteness of the domain.
For infinite fluids, the mean height of the free surface does not change in time. But for finite
fluids, the mean height decreases as time goes on. This is the main difference between infinite
and finite fluids. A recent investigation reported that gravitational effects were larger for
infinite fluids than for finite fluids [40]. This comment agrees well with the numerical results
presented in this paper.

Table III. Comparison between the numerical results and the series solutions.

Numerical resultsSeries solutionX position (L)

−1.06959×10−1−1.06975×10−10
1/16 −7.41286×10−2 −7.40894×10−2

−3.95352×10−2−3.95611×10−21/8
−2.24578×10−2 −2.24283×10−23/16

−1.39866×10−21/4 −1.40188×10−2

5/16 −9.45742×10−3 −9.42230×10−3

−6.76775×10−33/8 −6.72896×10−3

7/16 −5.02231×10−3−5.06564×10−3

−3.92638×10−31/2 −3.88459×10−3

Data correspond to the lowest surface profile in Figure 5. The differences are only about
10−5.
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The above arguments can explain the disagreements for q0=0.2. However, new questions
arise. Why does the disagreement appear only for q0=0.2? What is the difference between
q0=1.8 and q0=0.2? Before answering the questions, one should think about how the finite
size effect influences the dynamics. The free surface near the center can not perceive whether
the domain is finite or infinite, unless there is an interaction between the center where the dip
formation occurs and the end of the domain. At the end of the domain, the surface does not
distort before waves formed at the center arrive. The waves arrive at the end of the domain
and they are reflected back. These reflected waves affect the surface profile near the center.
Briefly, the finite size effect influences the dynamics through the waves that travel back and
forth. Now, the questions will be answered. The answer involves the time scale taken for the
waves to arise, travel to the end of the domain, be reflected back and carry the information
about the end of the domain to the center. The time scale is nearly the same, whatever q0 is.
It mainly depends on the length of the domain. There is not enough time for the finite size
effect influences the surface profile when q0 is large, while the effect plays an important role in
the dynamics when q0 is small. In some numerical calculations of an infinite domain with a
finite domain, the calculations were only performed until the waves did not arrive at the end
of the domain [26].

From the above results, it is concluded that the present numerical method accurately
describes the phenomena, in spite of the singular nature of a sink. Especially for small t, the
numerical results can not be distinguished from the series solutions. This is a remarkable result.
This also guarantees the series expansion of velocity potential converges well for the cases
considered here.

6. CONCLUDING REMARKS

In this study, a numerical method suitable for free surface flows is proposed. A free surface is
represented by a height function and the governing equations for the free surfaces, under the
assumption of a potential flow, are reduced to a Laplace equation with proper boundary
conditions. The solutions of the Laplace equation are written in terms of a sum of the linear
homogeneous solutions and the coefficients of the homogeneous eigensolutions for the given
boundary conditions are then determined at all time steps, which determines the motion of the
unsteady free surfaces.

The present method was applied to surface gravity waves and it was found that the accuracy
and the time complexity, even though the method is simple, are comparable with those of
well-established methods. A dip formation problem was considered as an example of the
application. The results were nearly equal to the approximate solutions. In conclusion, the
present method is efficient for free surface flows with simple geometries.
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